

STATISTICS I - 2nd Year Management Science BSc - 1st semester - ??/01/2016

2nd Mid-Term Exam – Theoretical Part V1

(theoretical part duration - 20 minutes)

This exam consists of two parts. This is Part 1 - Theoretical (40 points). This answer sheet will be collected 20 minutes after the beginning of the examination. During the duration of the exam, no clarifications will be provided. **GOOD LUCK!**

Name:

Section:____Number:__

Each of the following 2 groups of multiple-choice questions is worth 10 points. Each question answered correctly is worth 2.5 points; each wrong answer is worth -2.5 points. The grade obtained in each of the 2 groups varies between a minimum of zero and a maximum of 10 points.

Indicate whether the following statements are true (T) or false (F) by ticking the corresponding box with a cross(X):

1.

	Т	F
If (X, Y) is a two dimensional discrete random variable, the $E(X Y)$ always change for different values of $Y \in D_Y$		
Let (X, Y) be a two dimensional random variable. If the $E(X, Y) = E(X) \cdot E(X)$ then X, Y are independent random variables.		
Let <i>X</i> and <i>Y</i> be random variables that represent the number of successes on each of the two sequences of 50 independent Bernoulli trials. If $E(X) = 5$, $E(Y) = 10$, then the number of successes in the 100 trials ~ $b(x; 100, 0.3)$		
Let X_1 and X_2 be the number of events in a Poisson process with an hourly mean rate, λ_1 and λ_2 , in the intervals $\Delta t_1 = (0,5]$ and $\Delta t_2 = (3,7]$. Then the number of events in the interval $\Delta t = (0,7]$ follows a Poisson distribution with variance equal to $\lambda_1 + \lambda_2$		

2.

Each of the following questions is worth 15 points and should be answered in the space provided. Justify all your steps.

6. Let *X* be a random variable following a Poisson distribution with mean λ .

Prove that $P(X = x + 1) = \frac{\lambda}{x+1}$. $P(X = x) \quad x = 0, 1, 2, \cdots$

STATISTICS I - 2nd Year Management Science BSc - 1st semester - ??/01/2016

2nd Mid-Term Exam – Theoretical Part V1

(theoretical part duration - 20 minutes)

This exam consists of two parts. This is Part 1 - Theoretical (40 points). This answer sheet will be collected 20 minutes after the beginning of the examination. During the duration of the exam, no clarifications will be provided. **GOOD LUCK!**

Name:

Section:____Number:____

Each of the following 2 groups of multiple-choice questions is worth 10 points. Each question answered correctly is worth 2.5 points; each wrong answer is worth -2.5 points. The grade obtained in each of the 2 groups varies between a minimum of zero and a maximum of 10 points.

Indicate whether the following statements are true (T) or false (F) by ticking the corresponding box with a cross(X):

1.

TFIf (X, Y) is a two dimensional discrete random variable, the E(X|Y) will not change for
different values of $Y \in D_Y$ Let (X, Y) be a two dimensional random variable. If the E(X, Y) = E(X). E(X) then nothing
can be concluded about the independence of X, Y.Let X and Y be random variables that represent the number of successes on two sequences of
50 and 100 independent Bernoulli trials. If E(X) = 5, E(Y) = 10, then the number of
successes in the 150 trials ~ b(x; 150, 0.1)Let X_1 and X_2 be the number of events in a Poisson process with an hourly mean rate, λ_1 and
 λ_2 , in the intervals $\Delta t_1 = (0,2]$ and $\Delta t_2 = (2,7]$. Then the number of events in the interval
 $\Delta t = (0,7]$ follows a Poisson distribution with variance equal to $\lambda_1 + \lambda_2$

2.

	Т	F
-		
F		

The following questions is worth 15 points and should be answered in the space provided. Justify all your steps.

6. Let *X* be a random variable following a Poisson distribution with mean λ .

Prove that
$$P(X = x + 1) = \frac{\lambda}{x+1}$$
. $P(X = x) \quad x = 0, 1, 2, \cdots$

STATISTICS I - 2nd Year Management Science BSc - 1st semester – 05/11/2015 1st Mid-Term Exam – Practical Part

(practical part duration – 40 minutes)

This is Part 2: 12 marks. The answers to the multiple-choice questions should be given by signalling with an X the corresponding square. The other questions should be answered in the space provided.
Attention: For each of the multiple-choice questions, each correct answer is worth 10 points, each wrong answer is worth -2.5 points.

Name:

_____Nº:_____

1a.(10) 2a.(10) 3a.(11) T:
1b.(10) 2b.(15) 3b.(15) P:

1

Consider a city where only two daily newspapers are printed, newspaper A and newspaper B. It is known that 5% of its inhabitants read both newspapers, while 25% only read newspaper A, and 20% only read newspaper B.

a) If 20 persons were randomly chosen from the people in this city, compute the probability that exactly 4 of them read both newspapers. (signal with an X the right answer,)

(i) 0,0746 □ (ii) 0,9885□ (iii) 0,0133 □ (iv) 0,9974 □

b) One person is randomly chosen from the people in this city and he\she is a reader of newspaper A. Determine the probability that the chosen person was a reader of newspaper B.

Answer to 1.b)

Let (X, Y) be a random vector representing, for a family living in a certain district, the number of children (*X*) and the number of rooms in their home (*Y*). The joint probability function is given in the following table:

X					
		0	1	2	3
Y	2	0,04	0,05	0.02	0.00
	3	0,05	0,09	0,14	0.05
	4	0,02	0.12	0.22	0.20

a) If a family from this district have more than 1 child, find the probability that the family lives in a home with at least 3 rooms.

(i) 0,21 □	(ii) 0.35 🗆	(iii) 0.81 🗆	(iv) 0.46 🗆

b) Find the probability that a family from this district lives in a home with more than 1 but less than four rooms.

Answer 2.b)

Consider a random vector (*X*, *Y*) with probability density function given by:

$$f_{X,Y}(x, y) = 2 \ (0 < x < 1; 0 < y < 1/2)$$

a) Find the marginal probability density function of *X* and *Y*. Are *X* and *Y* independent?

Answer 3.a)

b) Compute $P(X \le 1/2)$.

Answer 3.b)

(practical part duration - 40 minutes)

This is Part 2: 12 marks. The answers to the multiple-choice questions should be given by signalling with an X the corresponding square. The other questions should be answered in the space provided. Attention: For each of the multiple-choice questions, each correct answer is worth 10 points, each wrong answer is worth -2.5 points.

Name:

Nº:

		Don't write here	
1a.(10)	2a.(10)	3a.(11)	T:
1b.(10)	2b.(15)	3b.(15)	P:

1

Consider a city where only two daily newspapers are printed, newspaper A and newspaper B. It is known that 5% of its inhabitants read both newspapers, while 25% only read newspaper A, and 20% only read newspaper B.

- c) If 10 persons were randomly chosen from the people in this city, compute the probability that exactly 2 of them read both newspapers. (signal with an X the right answer,)
 - (i) 0,0746 □ (ii) 0,9885 □ (iii) 0,0133 □ (iv) 0,9974 □
- d) One person is randomly chosen from the people in this city and he\she is a reader of newspaper B. Determine the probability that the chosen person was a reader of newspaper A.

Answer to 1.b)

Let (X,Y) be a random vector representing, for a family living in a certain district, the number of children (X) and the number of rooms in their home (Y). The joint probability function is given in the following table:

X

		0	1	2	3
Y	2	0,04	0,05	0.02	0.00
	3	0,05	0,09	0,14	0.05
	4	0,02	0.12	0.22	0.20

c) If a family from this district lives in a home with 3 rooms, find the probability that the family have less than 2 children.

(i) 0,42 □	(ii) 0.14□	(iii) 0.27 🗆	(iv) 0.15 🛛
	()		· · ·

d) Find the probability that a family from this district has a number of children equal or bigger than 1 but less than 3.

Answer 2.b)

3

Consider a random vector (*X*, *Y*) with probability density function given by:

 $f_{X,Y}(x, y) = 2$ (0 < x < 1; 0 < y < 1/2)

c) Find the marginal probability density function of *X* and *Y*. Are *X* and *Y* independent?

Answer 3.a)

d) Compute $P(Y \le 1/4)$.

Answer 3.b)